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Abstract

In this paper, we consider the linear quadratic optimal control

problem on infinite time interval for linear time-invariant systems defined on

Hilbert spaces. The optimal control is given by a feedback form in terms of

solution ri to the associated algebraic Riccati equation (ARE). A Ritz type

approximation is used to obtain a sequence 'N of finite dimensional

approximations of the solution to ARE. A sufficient condition that shows riN

converges strongly to nI is obtained. Under this condition, we derive a

formula which can be used to obtain a rate of convergence of IlN to n.

We demonstrate and apply the results for the Galerkin approximation for

parabolic systems and the averaging approximation for hereditary differential

systems.
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1. Introduction

Assume Z, U and Y are Hilbert spaces. Consider the evolution

equation on Z

(1.1) z(t) = A z(t) + B u(t), z(0) = z 0 E Z

where u(t) is a U-valued control function, A is the infinitesimal generator of

strongly continuous semigroup S(t) on Z, and B E t(U,Z). The Y-valued

observation function y is given by

(1.2) y(t) = C z(t) , t ? 0 .

We assume that C E Z(Z,Y). We interpret the equation (1.1) in the mild sense;

the solution of (1.1) is given by

(1.3) z(t) = S(t)zo + J S(t-s)B u(s)ds

Consider the minimization problem; minimize the cost functional

(1.4) J(u,Zo) = (11y(t) 112 + IIu(t)ll)dt

subject to (1.3). Then the following result is well-known [101,[11]:

Theorem 1.1 Assume (A.B) is stabilizable and (A,C) is detectable. Then

there exists a unique nonnegative self-adjoint solution rn to the algebraic

Riccati equation in Z:

(1.5) (Afn + nA - iBBfn + C*C)z = 0 for all z c dom(A)

and the optimal solution u°  to (1.4) is given by

u°(t) = -B*n T(t)zo

where T(t) is the strongly continuous semigroup generated by A- BB*n

and it is uniformly exponentially stable.
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Here we have

Definition 1.2 (1) (A,B) is stabilizable if there exists an operator

K e Z(Z,U) such that A-BK generates a uniformly exponentially stable

semigroup on Z.

(2) (AC) is detectable if there exists an operator. G E Z(Y,Z) such that A - GC

generates a uniformly exponentially stable semigroup.

The purpose here is to construct a finite dimensional approximation

of the optimal feedback gain operator BrL Let us consider a sequence of

approximating problems (ZN,ANBN,CN); let ZN be a sequence of finite

dimensional subspaces of Z and pN be the orthogonal projection of Z onto

ZN. Assume AN : ZN -.ZN , BN : U - ZN and CN : ZN - Y are continuous.

Then consider the Nth approximating problem of (1.4)

(1.6) minimize JN(u,ZO) J (CNZN(t) 112 + IIU(t)112)dt

subject to

(1.7) zN(t) = SN(t)pNz0 + J SN(t-S)SNu(s)ds

0

where sN(t) eAN t, t 0 0. Then the optimal control uN of (1.6) is given

by

uN(t) - ,BN*Ne(ANBBfn)tpNZ t 3 0

where rIN ZN -. ZN is self-adjoint and satisfies the Nth approximating

algebraic Riccati equation in ZN;

(1.8) AN*rIN + nNAN _ rnNBNN*nN + CN*CN = 0

Here, BN*rlN, N ), I yields a sequence of finite dimensional approximations of

MO0t65118'1 E
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the optimal feedback gain [3].

In this paper we first obtain a condition on (ZN.AN,BN,CN) for which

(1.8) admits a unique nonnegative solution e1N, and rNpN converges strongly to n

in §2. Such a condition has been discussed in [2], [3] but the condition in this

paper improves those in [2], [3], i.e., we introduce the uniform detectability

condition (see, (H3) in S2, for the definition) which is additional to those

considered in [2], and using this condition, we are able to show that there

exists an integer No such that for N No

Ile(An'BNBN*nN)tpNII M e-t t , t ) 0

for positive constants M ) I and wo (independent of N ;o NO). This assertion

is a part of assumptions in [2, Theorem 2.2]. The uniform detectability

condition is satisfied if C*C is coercive, which is assumed in the discussions in

[2,p. 693]. Thus, the uniform detectability condition can be regarded as a

relaxation of the coercivity assumption mentioned above. Next, under the

condition in §2 we derive a formula which provides a rate of convergence of

nN to n and apply the formula for specific examples.

b
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2. Uniform Stability and Strong Convergence

We assume the following. Let SN(t) - eANt, t )1 0

(HI) For each z c Z, we have

(i) SN(t)pNz -. S(t)z , and

(ii) SN(t)*PNz " S*(t)z ,

where the convergences are uniform in t on bounded subsets of [0,-).

(H2) (i) For each u c U, BNu - Bu and for each z e Z
, BN*pNz

B Np -P B*z.

(ii) For each z 6 Z, CNpNz - Cz and for each y e Y

CN*y -. C*y.

(H3) (i) The family of the pairs (AN, BN) is uniformly stabilizable: i.e.

there exists a sequence of operators KN E X(ZN,U) such that

suplIKNI, < - and

Ile(AN-BNKN)tPNII Mte'lt° , t P 0

for some positive constants M, ), I and w1 .

(ii) The family of the pairs (AN, CN) is uniformly detectable; i.e.

there exists a sequence of operators GN C r(Y,ZN) such that

supJIGNI, <- and

i-- [[e(AN.GNCN)tpI M --wst

,,,A - pN11 M2 e , t, 0

for some positive constants M2 ) I and w2.

Remark (I) Suppose BN . pNB and CN = CPN. Then (H2) holds

' since it follows from (HI) that pNz -. z for all z e Z.

(2) The assumption (H3) is closely related to the preservation of

exponential stability under approximation in [3,Conjecture 7.1) and it is shown

in [2] that (H3) (i) ((POES) in [21) is satisfied for parabolic systems using the

*1-
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Galerkin approximation.

(3) A natural way to argue (H3) is to take KN = KpN and G N = pNG f or

some K e Z(Z,U) and G e Z(Y,Z) such that A - BK and A - GC generate

uniformly exponentially stable semigroups on Z.

Theorem 2.1 Suppose (Hl)-(H3) are satisfied. Then for each N, (1.8)

admits a unique nonnegative solution n N, sup 1 nN 1 < -, and there exist

positive constants M. ), 1 and w. (independent Of N) such that

Ije(A NBN BN*rIN)t pN 11 M~ew3 t , t ) 0.

Proof: The proof is based on the arguments in [111. The existence and

uniqueness of solutions to (1.8) follow f rom Theorem 1.1. Since

<nNpNZ,Z> = min jN(uz) (H-3) (i) implies that

<nNpNZZ> j jN(..KNZN(_.);z)

I'J (1jCNCABNK )t pNZ112 + IJKNe(NGBNK )tpNzj12 )dt
0

OII~ZI12  for some positive constant 0

Since flN is seif-adjoint, nonnegative definite, this implies that 11nN11  13_

By the variation of constants formula

(2.1) e (ABBn)t = T N(t) + t TN( t-s)(G NCN-BN BN*flN)e(ANBNBN f)s ds
J0

where T N(t) = e(A NGNCN)tI t ) 0. Here, from (13~)

(AN.B NB N nNY)rN + nN(A NBNBN nN) + nNB N N*eN + CN*CN = 0

so that if z N(t) = JAN -BN N*r)tpNZ, t 0, then
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d. zN(t),nNZN(t)> + 1 BNflNZN(t) 112 + 11CNZN(t) 12 . o
at1

Thus, for all t ) 0

(2.2) (IINZN1(t),ZN(t) > + JIB 11 NfOZN(t) 112 + 11cOzN(t) JJ2)dt
0

4 (riNpNZZ> 4 Jj1zJJ 2

Now, from (2.1), we have for all t ; 0

Jo 1zN(S) 11
2ds 4 2 1z2 + 2 (JIG N11

2  + flBNj 1
2) J(BN*eI ZN(S) 112

+ 1 1CNZN(s) 11
2 )ds

where we have used the Young's inequality. From (2.2), we have

f.I 1zN(t) 12 dt (+2 p(GN11
2 + BN1)IZ2

2

for all z iE Z. Therefore, the theorem follows from the Datko's theorem [7].

(Q.E.D.)

The following is a consequence of [3, Theorem 6.9] and [2, Theorem

2.2].

Corollary 2.2 Suppose (A,B) is stabilizable and (A,C) is detectable and

assume (HI) - (H3) are satisfied. Then the unique nonnegative solution flN

to (1.8) converges strongly to Ri the unique solution to (1.5).

Theorem 2.3 Suppose that B is compact and BN = pNB and that

(HI)(i) and (H3)(i) are satisfied. Then (ARB) is stabilizable.

Proof: Let us consider the case C = I and CN - pN with Y = Z. Then it is

easy to show that (A,C) is detectable and (A NICN), N ), I are uniformly

detectable since (HI)(i) implies that for some M ) I and w independent of N,
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IISN(t)pN 4 Me(A, t ), 0. It then follows from Theorem 1.1 and (H3)(i) that for

each N, (1.8) with CN = pN has a unique solution FIN. Using the same

argument as in the proof of Theorem 2.1, we have i1fillj 4 A for some positive

constant 8. Thus, by Theorem 6.5 in [3], there exists a subsequence of fiN

converges weakly to some nonnegative, self-adjoint operator TL We will show

that ni satisfies (1.5) with C = I. Since pNfiN = IN BN*fN -

N.* AN
B*pNfiN = B*lN. Since B* is compact, for each z c Z, B nj jpNz converges

strongly to B*nz. It now follows from [3, Theorem 6.7] that n satisfies (1.5)

But since (A,C) is detectable, by [10, Theorem 3.2], A - BB*rl generates a

uniformly exponentially stable semigroup on Z.

(Q.E.D.)

Remark 2.4 Roughly speaking, Theorem 2.3 means that the uniform

stabilizability implies the stabilizability of (AB). The dual statement of

Theorem 2.3 also holds: i.e., suppose C is compact, CN = CPN, then (Hl)(ii)

and (H3)(ii) imply that (A,C) is detectable. This statement can be proved by

applying the exactly same arguments as in the proof of Theorem 2.3 to the

dual Riccati equation

(AE + EA* - rC*Cr + I) z = 0

for all z E dom(A*).S



3. Con vergence Rate

In this section, we assume that (HI1) and (H13) are satisfied and let

BN -N NB and CN . CPN. Moreover, we assume

(114) For each z e Z, flz c dom(A*) and B is compact.

From (1.5), we have for all z e dorn(A)

2<flz,Az> - (B*flz,B*rlz> + (Cz,Cz> =0

Thus, (H4) and the density of dom(A) in Z imply that for all Z E Z

2<A*flz,z> - (B*riz,B*nz> + (Cz,Cz > = 0
^N = ~npN E Z

Define the seif-adjoint operator 1N -p 1 p Then for all x6Z

(3.1) 2<Bnx (AN*flNX,X> A BfNBAlNX > + <CNX,CNX > + <ANXX> =0

where AN IE T(ZN) is a seif-adjoint operator defined by

(3.2) (ANXX> = 2((A* A N~pN)lX,X >

+ (*(flN - fN)XB*(N + nN)X > fo a 1lxE ZN

From (1.8), for X 6 ZN

(3.3) 2(AN*flNX,X> _ (BN*flx,BN*flNX> + (CNX,CNX> = 0

Hence by subtracting (3.1) from (3.3)

2 <(AN _ BN B NrN)X, (nN _-jNX

*+ (BN*(TIN fN)x, BN(N _ ^N)X > - <ANX,X > -0

for all x 6 ZN. Or equivalently

(4 N-fjN w f (A NBN BN~nN)t((nN _ fIN)N N*(IN - rI) -AN)

x (A -BNB~l~ dt

4 l
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Similarly, subtracting (3.3) from (3.1), we obtain

(3.5) JO -N =e(AN-BNBN*fN)t((nN fiN)BNBN*(nN _ fiN) + AN)

e(AN-BNBN*fiN)tdt

Here, from Theorem 2.1, we have

II(ANBNBN*rN)t pNj 1, M 3e 3 , t 0

with M 3I and w3 > 0. Since nNpN -. 11, strongly by Corollary 2.2 and

B is compact

JIBN*(nN _ fiN) 11 = 11(nN - n)pNBiJ - 0 as N -

*Hence by the variation of constants formula and the Gronwall's lemma,

,e(ANBNBN*nN)t PNii ( 3+ 1 II IIB*(f' N) Ip)t

It then follows that there exists an integer N o such that if N ) NO,
W
3Ile(AN'BNBN*fiN)t PNII t M t t ) 0

Now, from (3.4) for all x C ZN

(3.6) (fN _ -fdt > N A N (A -BB n)tX;1 2 dt
0

*c - J e(A N-BNBN*riN)tx, AN e(ANBNBN*nN)t, xlt
0

and from (3.5)

(3.7) <(fln - nN)xx> _J lBN(nN  n nN)e(AN'B BnN)tx I2dt

0
= e(AN-BNBN*N)tx, ANe(A NBN*fN)tx>dt

Ti 0 

These inequalities imply that for X 4E Z N
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A 2M'
1 O(.N - rN)X,X>i , -3 11 A&N1 1 1XII2

so that

(3.8) ,1lnN _fiN1 1 , 2M 2 IIAN11

where from (3.2)

(3.9) JJAN'JJ ( 211(A* - AN~pN)rl11 + 213 JIB 1 1(8*(B*N*)rnil for all N No.
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4. Examples

In this section we discuss the examples in which (Hl)-(H4) are

satisfied and then apply the formula (3.8) and (3.9) to obtain a convergence

rate of nIN to M

4.1 Parabolic Systems

Assume V and H are Hilbert spaces and V c H with

continuous dense injection i. Consider a bilinear form a on V such that

(4.1) io(u,v)I I cllull ilvJl for u,v 6 V
V V

(4.2) o(u,u) tLqlul2- piiull for u E V

where w > 0. It then follows from [9] that there exists an operator A E

f(V,V*) such that

(4.3) o(u,v) = <-Au,v,> for u,v e V

V*,V

where V C H = H* C V* and H being the pivoting space, and that A

on H with

(4.4) dom(A) = (x e H : Ax e H) dense in V,

generates the analytic semigroup on H and V*. For given B e Z(U,H) and

C e t(H,V) consider approximating problems (ZNA N,BN,CN); i.e. let ZN be a

sequence of finite dimensional subspace of V and AN: ZN _ ZN is defined by

(4.5) (-ANz,x> = o(z,x) for z,x C ZN

Let pN be the orthogonal projection of H onto ZN and assume BN

pNB and CN f CPN. We assume the approximation condition:Wil 11 9 1
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For each z e V there exists an element z N E ZN

(4.6) such that 1Z- ZNjJ 4 e(N) where e(N) - 0 as N -

V

It then follows from 121 that (HI) holds and if (A,B) is stabilizable and (AC) is

detectable, then (1-3) holds. Thus from Corollary 2.2, nN converges strongly to

ML However one cannot apply the formula (3.8)-(3.9) as it is, since

riZ C dom(A*) is the maximal regularity without assuming any regularity of C.

This can be demonstrated by the following example. Consider the case when

H = L2(0,1) and V = HI(,) and

COMuv J d.- u(x) d v(x)dx for U,V E H1.

Let us consider the Liapunov equation on H

(4.7) A E+ EA +Q=O0

where Q is self-adjoint operator on H. If for each Z E Z,

(Ez)(x) = Jo O(x,y)z(y)dy and (Qz)(x) = Jo q(x,y)z(y)dy,

then *P satisfies A(A + q = 0 with Dirichlet boundary condition,

a2 132
where A( - 0 + - * for * E~2[0l H 01) In general (e.g., see

8x 2  ~y 2

f 1 1 1[2 L 2 + I .a2 012 J q 1 2

0 ol 20 21 x dxdy 4M 00d

This implies EL2 C dom(A) is the maximal regularity.

Hence we will modify the arguments in Section 3 to improve thc

formula (3.8)-(3.9) for this example. First we note that in (3.2) for X E ZN

((A*-AM ) I~~ = o(x,(ln- n)x)I

( c jjx IQI(f - rIN)x 11 Vby (4.1)

1211fIllIMW
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Thus from (3.2)

(4.8) su (ANXX >1 2 c sup 11(nflN)x liv

V VI 1

+ 2ca0IIBf 11su IIB*(nfiN)x lIV

where$ IIXIHIIIIY

Lemma 4.1 There exists a positive constant M such that

.fIle(AN-BN BN*flN)t pNX(. 2 dt2~l n

0

1e(A NBNBN~fiN)t pN)1 1
2 dt< 2

Proof: Let t N(t) - (A NBNBNflN)t pNx , t ) 0. Then kN(t) satisfies

d k N(t) -(A N-BN B N *N) tN(t) ,t ) 0
dt

so that from (4.5)

1 d N 2 + NNN* (B*NtNN(t)>

2 tIIkN(t)It ~Nt) B~Nt, H

and from (4.2)

1 d -ItN 2 ( 1jIN(t)I1
2 4 (p + 211B11 2) Nt2

2 T I (t) IIH + V 1H

The integration of this inequality with respect to t yields

1 11IkN(t)I112 + WJ' IItNOII11 4 p ~N(0)112 + (p + 21JB 112) J' ItNSII2 ds.

Now the lemma follows from Theorem 2.1.

Q.E.D.
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It then follows from Lemma 4.1 and (4.8) thatI

0f <AN e(A N BNBNnN)t. , e(AN-BN B NfN)tX >

7JIe (ANB N B N *N)t pNx dt2y 2

Similary for e(A-BB t n t ) 0. Therefore we obtain, using (3.6) and

(4.9) 11nN fiN 11 4 M-y

where yis given by (4.8).

Consider the (1-dimensional) parabolic control system [2];

a a a a
-z(t,x)=-(P(x) Z) +q(x) z +r(x)zat ax ax ax

+ E bi(x)ui(t) in (0.1)

with boundary condition z(t,O) = z(t,l) = 0, where p e C1 (0,l), being bounded

d
below by a positive constant W, axq, r 4E L (0,1), and bi E L2(0,1), i 1 m

In this case, H L L2(0,l) and V -- HI(0,1), and the bilinear form a is

given by

d d d
ONu,V) =J[p(x) F u jWv - (q(x) -u + r(x)u)v]dx

B: A'1 - L 2(0,l) is defined by

(Bu)(x) = 1: bi(x)ui for u c Am"

and dom(A) = dom(A*) = H 2(O'l) () H'(0,l). Let us consider the following

finite dimensional subspace Z1N of V:

N-1
ZN = (Z e H: z(x) = B £ 1~(x) ,i czE )

WWII=I
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where B '(. i 1 ,...,N-1 are the linear B-spline elements on the interval [0,I];

i.e.,

r i+l Fi i+1 1
I-N(x--) x ( -

BN N(x--) XEf

L 0elsewhere

?Then the approximation condition (4.6) is satisfied [8]. Suppose (A,B) is

stabilizable and (AC) is detectable. Then (1.5) has the unique solution ii

and using a similar arguments to those given above to show the regularity of

solutions to Liapanov equation (4.7), one can show that for x E H, lix e

dom(A*). Since A* is closed in H and dom(A*) C V, by the closed graph

theorem, there exists a positive constant k,, such that Ijlz IIH2(0,I) I k 11Z 1IL2(oI1)

Hence the fundamental error estimate (e.g., [8]) gives

jjnz - n ZIIL 4 k2 I]IIZ II2

jj- ~n 4 kHLI Ik3  12

for some positive constants k2 , Now it follows from (4.8) and (4.9) that

11 fN~fN 1  k R).. for some constant k.

4.2 Hereditary Differential Systems

Consider the hereditary differential system in AN";

rx(t) =Aox(t) + Ax(t-r) + r, A(e)x(t+O)de + Bu(t)

(4.10) x(0) = I and x(e) 0 (8), -r 4 9 < 0
y(t) =C x(t)I
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and the optimal control problem; for given initial data z =(I~

L 2(-r,0; EP") , minimize the cost functional

(4.11) J(u,z) = J (Iy(t) 1 2+ I u(t)I)

Here, x e W~, u e P'm and y c AP' and the element of A() is squareU

integrable. It is shown [1] that (4.10) and (4.11) are equivalently formulated as

the problem (1.1) - (1.4) on the product space Z =W x L 2(-r,0;IRW); i.e., z(t)

(x(t),x(t+-)) F Z is the mild solution of (1.1) withI

dom(A) = (ri,O) e Z c H1(-r,0) and 0(0) 17T)

for (0(0),(0) c dom(A)

A(00),) =(A 04<0) + A 0(-r) + fi A(9)0<8)dO, *

The input operator 8 : A - Z and the output operator C :Z - IR are

given by

Bu =(Bu,O) EZ and C(T,O) = C

Let us consider the averaging approximation [l] of (4.10); let

N

ZN =(zZ Z:z= (aOEa kX i j_1 a k eR , 0 k 4N) CZ
k=I [--r,-- r)

N N

and A N has the matrix representation (QN)'H N on W~(N+I) when ZN is

identified with Wn(N +') by its coordinate vector co~T T where the block

diagonal matrix QN and the block Hessenberg matrix H N are given by

AN lopN
r 0 1-

QN = N ~ and HN-r I
pN
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i-I N-1
N rAN +f

with A 1 AO 9 A rNA (O)dO and A = A +(~B Note that
NN

pN B -B and CPN =C. Set B N =B and CN = C. Then (A N)* has the

matrix representation (Q)'HN on ~(N+1). (111)(i) is proved in [1) and

(HI)(ii) is proved in [31. Using the arguments in 151, [71 one can show that

(H3) is satisfied (i.e., (i) is straightforward but (ii) is not so). Thus, thc

formula (3.8)-(3.9) yields

In fN 1 2 211(A* ^N1 N~pN)111

By the regularity result in [4], if A(.) e Hl(-r,O;Rnxn), then

A*rI + C*C e dom(A*)

where dom(A*) - ((yO) e Z : 0 e H1 and 4'(-r) = ATyI and A*(y,Ik)=

(4)(0) + A~y, - 43(8) + AT(._)y) C Z [3]. Since C*C(7,43) = (CTCT7,O) E Z for

('7,4) E Z, this implies that if liz = (y,4i), then 43 e H1 so that 43 c H 2 , and

since A* is closed, 1j311 H21 MIjzIIz for some constant M. It then follows

from the arguments and error estimate in [1], [3] that

II(-( I-A + 11 1H 2)

Hence we obtain JN-hN 1 =()

id' 1 .-
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